首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2253篇
  免费   34篇
  国内免费   344篇
化学   2204篇
晶体学   23篇
力学   14篇
综合类   3篇
数学   2篇
物理学   385篇
  2023年   69篇
  2022年   36篇
  2021年   34篇
  2020年   41篇
  2019年   44篇
  2018年   43篇
  2017年   40篇
  2016年   50篇
  2015年   60篇
  2014年   87篇
  2013年   141篇
  2012年   126篇
  2011年   124篇
  2010年   125篇
  2009年   153篇
  2008年   144篇
  2007年   153篇
  2006年   134篇
  2005年   140篇
  2004年   138篇
  2003年   89篇
  2002年   71篇
  2001年   66篇
  2000年   54篇
  1999年   64篇
  1998年   39篇
  1997年   44篇
  1996年   50篇
  1995年   43篇
  1994年   35篇
  1993年   40篇
  1992年   31篇
  1991年   24篇
  1990年   18篇
  1989年   18篇
  1988年   18篇
  1987年   3篇
  1986年   11篇
  1985年   4篇
  1984年   2篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1979年   1篇
  1977年   1篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有2631条查询结果,搜索用时 15 毫秒
1.
This study investigated the effects of different treatment of alkaline pH-shifting on milk protein concentrate (MPC), micellar casein concentrate (MCC) and whey protein isolate (WPI) assisted by the same ultrasound conditions, including changes in the physicochemical properties, solubility and foaming capacity. The solubility of milk proteins had a significant increase with gradual enhancement of ultrasound-assisted alkaline pH-shifting (p < 0.05), especially for MCC up to 99.50 %. Also, treatment made a significant decline in the particle size of MPC and MCC, as well as the turbidity of the proteins (p < 0.05). The foaming capacity of MPC, MCC, and WPI was all improved, especially at pH 11, and at this pH, the milk protein also showed the highest surface hydrophobicity. The best foaming capacity at pH 11 was the result of the combined effect of particle size, potential, protein conformation, solubility, and surface hydrophobicity. In conclusion, ultrasound-assisted pH-shifting treatment was found to be effective in improving the physicochemical properties and solubility and foaming capacity of milk proteins, especially MCC, with promising application prospect in food industry.  相似文献   
2.
This research demonstrates, a facile approach to fabricate the nano ZnO system in an unique combination of surfactant-polyol-assembly (SPA) acting as a caging agent restricting the ZnO crystallite size in nano-regime. This SPA is suitable for health and hygiene products and such optimized technique is among the very few researches exploring the impact of embedding low concentrations of nano ZnO system into the matrix of sodium salt of long chain fatty acids (soap bar) and liquid cleansing personal care products. The fabricated nano ZnO in SPA and infused products were systematically characterized using various advanced and appropriate techniques. The hexagonal wurtzite structure of nano ZnO-SPA is evaluated based on XRD pattern which also exhibit an average crystallite size as 20.18 nm and high specific surface area as 52.99 m2/g. The SEM-supported morphological assessment confirms the formation of agglomerates of ultrafine ZnO rods and spherical particles. Novel nano ZnO having wideband gap energy (3.66 eV) embedded in soap bar act as a UV-blocker preventing the oxidation of unsaturated long chain fatty acids. Soap bar without ZnO experienced degradation and reduction in whiteness to 17.85% whereas 2.5 mg/g nano ZnO infused soap shows the reduction to 7.9% which clearly reflects the increased photostability of soap bar. The antibacterial efficacy of nano ZnO-SPA and infused products are investigated against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) by Zone of Inhibition (ZOI) and European standard EN:1276. Infused products exhibited high antibacterial efficacy up to 4.43 log reduction equivalent to >99.99% germ kill.  相似文献   
3.
The salt effects on molecular orientation at air/liquid methanol interface were investigated by the polarization-dependent sum frequency generation vibrational spectroscopy(SFG-VS). We clarified that the average tilting angle of the methyl group to be u = 308 58 at the air/pure methanol surface assuming a d-function orientational distribution. Upon the addition of 3 mol/L Na I, the methyl group tilts further away from the surface normal with a new u = 418 38. This orientational change does not explain the enhancement of the SFG-VS intensities when adding Na I, implying the number density of the methanol molecules with a net polar ordering in the surface region also changed with the Na I concentrations. These spectroscopic findings shed new light on the salt effects on the surfaces structures of the polar organic solutions. It was also shown that the accurate determination of the bulk refractive indices and Raman depolarization ratios for different salt concentrations is crucial to quantitatively interpret the SFG-VS data.  相似文献   
4.
《中国化学快报》2020,31(9):2254-2258
In the work, we successfully explore a two-step hydrothermal method for scalable synthesis of the hybrid sodium titanate (NaTi8O13/NaTiO2) nanoribbons well in-situ formed on the multi-layered MXene Ti3C2 (designed as NTO/Ti3C2). Benefiting from the inherent structural and componential superiorities, the resulted NTO/Ti3C2 composite exhibits long-duration cycling stability and superior rate behaviors when evaluated as a hybrid anode for advanced SIBs, which delivers a reversible and stable capacity of ∼82 mAh/g even after 1900 cycles at 2000 mA/g for SIBs.  相似文献   
5.
A novel micro matrix solid phase dispersion method was successfully used for the extraction of quaternary alkaloids in Phellodendri chinensis cortex. The elution of target compounds was accomplished with sodium hexanesulfonate as the eluent solvent. A neutral ion pair was formed between ion-pairing reagent and positively charged alkaloids in this process, which was beneficial for selectively extraction of polar alkaloids. Several parameters were optimized and the optimal conditions were listed as follows: silica gel as the sorbent, silica to sample mass ratio of 1:1, the grinding time of 1 min. The exhaustive elution of targets was achieved by 200 µL methanol/water (9:1) containing 150 mM sodium hexane sulfonate at pH 4.5. The method validation covered linearity, recovery, precision of intraday and interday, limits of detection, limits of quantitation, and repeatability. This established method was rapid, simple, environmentally friendly, and highly sensitive.  相似文献   
6.
Surimi from silver carp with different salt contents (0–5%) was obtained treated by high intensity ultrasound (HIU, 100 kHz 91 W·cm−2). The gelation properties of samples were evaluated by puncture properties, microstructures, water-holding capacity, dynamic rheological properties and intermolecular interactions. As the salt content increased from 0 to 5%, gel properties of surimi without HIU significantly improved. For samples with low-salt (0–2% NaCl) content, HIU induced obvious enhancement in breaking force and deformation. HIU promoted the protein aggregation linked by SS bonds, hydrophobic interactions and non-disulfide covalent bonds in surimi gels with low-salt content. Moreover, microstructures of HIU surimi gels with low-salt content were more compact than those of the corresponding control samples. HIU also improved the gelation properties of surimi with 3% NaCl to an extent. However, for high-salt (4–5% NaCl) samples, HIU decreased the breaking force and deformation of surimi gels due to the degradation of proteins suggested by increased TCA-soluble peptides. In conclusion, HIU effectively improved the gelation properties of surimi with low-salt content (0–2% NaCl), but was harmful for high-salt (4–5% NaCl) surimi. This might provide the theoretical basis for the production of low-salt surimi gels.  相似文献   
7.
《印度化学会志》2023,100(6):101023
The cement industry is responsible for 8% of total global CO2 emissions, which mainly originate from limestone calcination and fuel combustion. In view of the application potential of using CO2 to produce chemicals, this paper developed a novel process based on the Aspen Plus process simulation for the co-production of 99.99% CO2 by means of Methyldiethanolamine (MDEA) absorption/desorption and NaHCO3 by carbonization of CO2, NH3 and Na2SO4. The effects of absorption temperature, NH3 and Na2SO4 feeding amount, crystallizer temperature and pressure on CO2 capture rate and utilization rate were explored. The results showed that the best CO2 capture rate was achieved when the cellar gas inlet temperature of the absorber tower was 37 °C; Saturated Na2SO4 solution was favorable for CO2 absorption, and the CO2 utilization rate increased with the increase of Na2SO4 dosage; NaHCO3 yield decreased with the increase of crystallizing temperature, and the best NaHCO3 yield was achieved when the crystallizer temperature was 35.5 °C; Crystallizing pressure had little impact on the reaction. Economic analysis showed that the project will start to be profitable in 6.48 years with a Net Return Rate (NRR) value of 13.51%. It indicates that the project has economic benefits and provides a new way to reduce CO2 emissions from lime cellar gas.  相似文献   
8.
Tetrafluoroborate (BF4) has long been used as a spectator counter anion. Herein, we report an unprecedented salt metathesis between a variety of BF4 salts and a series of organoboronic acids yielding the corresponding organotrifluoroborates. We identified conditions for fast and efficient fluoridation (<1 h) with minimal workup. Fundamentally, this work discloses the proclivity of BF4 to exchange fluoride atoms with organoboronates, highlighting the lability of BF4.  相似文献   
9.
Metallic Na is a promising metal anode for large-scale energy storage. Nevertheless, unstable solid electrolyte interphase (SEI) and uncontrollable Na dendrite growth lead to disastrous short circuit and poor cycle life. Through phase field and ab initio molecular dynamics simulation, we first predict that the sodium bromide (NaBr) with the lowest Na ion diffusion energy barrier among sodium halogen compounds (NaX, X=F, Cl, Br, I) is the ideal SEI composition to induce the spherical Na deposition for suppressing dendrite growth. Then, 1,2-dibromobenzene (1,2-DBB) additive is introduced into the common fluoroethylene carbonate-based carbonate electrolyte (the corresponding SEI has high mechanical stability) to construct a desirable NaBr-rich stable SEI layer. When the Na||Na3V2(PO4)3 cell utilizes the electrolyte with 1,2-DBB additive, an extraordinary capacity retention of 94 % is achieved after 2000 cycles at a high rate of 10 C. This study provides a design philosophy for dendrite-free Na metal anode and can be expanded to other metal anodes.  相似文献   
10.
An overall carbon-neutral CO2 electroreduction requires enhanced conversion efficiency and intensified functionality of CO2-derived products to balance the carbon footprint from CO2 electroreduction against fixed CO2. A liquid Sn cathode is herein introduced into electrochemical reduction of CO2 in molten salts to fabricate core–shell Sn−C spheres (Sn@C). An in situ generated Li2SnO3/C directs a self-template formation of Sn@C. Benefitting from the accelerated reaction kinetics from the liquid Sn cathode and the core–shell structure of Sn@C, a CO2-fixation current efficiency higher than 84 % and a high reversible lithium-storage capacity of Sn@C are achieved. The versatility of this strategy is demonstrated by other low melting point metals, such as Zn and Bi. This process integrates energy-efficient CO2 conversion and template-free fabrication of value-added metal-carbon, achieving an overall carbon-neutral electrochemical reduction of CO2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号